Strategic Research Areas

Research in Electrical and Computer Engineering covers an extremely broad range of topics. Whether in computer architecture, energy and power systems or in nanotechnology devices, the research conducted in ECE is at the cutting edge of technological and scientific developments. 

Image of a computer chip

Computer Engineering

Computer engineering concerns itself with the understanding and design of hardware needed to carry out computation, as well as the hardware-software interface. It is sometimes said that computer engineering is the nexus that connects electrical engineering and computer science. Research and teaching areas with a significant computer engineering component include digital logic and VLSI design, computer architecture and organization, embedded systems and Internet of things, virtualization and operating systems, code generation and optimization, computer networks and data centers, electronic design automation, or robotics.

Related Research Areas

Robotics and Autonomy image

Robotics and Autonomy

Robotics at Cornell spans various subareas, including perception, control, learning, planning, and human-robot interaction. We work with a variety of robots such as aerial robots, home and office assistant robots, autonomous cars, humanoids, evolutionary robots, legged robots, snake robots and more. The Collective Embodied Intelligence Lab works to design and coordination of large robot collectives able to achieve complex behaviors beyond the reach of single robot systems, and corresponding studies on how social insects do so in nature. Major research topics include swarm intelligence, embodied intelligence, autonomous construction, bio-cyber physical systems, human-swarm interaction, and soft robots.

Visit the the Cornell Engineering Robotics Website for more.

Related Research Areas

People network image

Information, Networks, and Decision Systems

This research area focuses on the advancement of research and education in the information, learning, network, and decision sciences. Our research is at the frontier of a wide range of fields and applications, including machine learning and signal processing, optimization and control theory, information theory and coding, power systems and electricity markets, network science, and game theory. The work encompasses theory and practice, with the overarching objective of developing the mathematical underpinnings and tools needed to address some of the most pressing challenges facing society today in energy and climate change, transportation, social networks, and human health. In particular, the Foundations of Information, Networks, and Decision Systems (FIND) group comprises a vibrant community of faculty, postdocs, and students dedicated to developing the mathematical underpinnings and tools needed to address the aforementioned challenges in a principled and theory-guided manner.

Related Research Areas

Wire array load image

Physical Electronics, Devices, and Plasma Science

Work in this area applies the physics of electromagnetism, quantum mechanics, and the solid state to implement devices and systems for applications including energy, quantum technologies, sensing, communication, and computation. Our efforts span theory and development of new electronic and optical devices and materials, micro-electromechanical systems, acoustic and optical sensing and imaging, quantum control of individual atoms near absolute zero temperature, and experiments on high-energy plasmas at temperatures close to those at the center of the sun. 
 
At Cornell ECE, we work on diverse topics aimed at transforming the way we view the world. Our interdisciplinary research reveals fundamental similarities across problems and prompts new research into some of the most exciting and cutting-edge developments in the field.

Related Research Areas

Chip circuit image

Circuits and Electronic Systems

Integrated circuits are ubiquitous and integral to everyday devices, from cellular phones and home appliances to automobiles and satellites. Healthcare, communications, consumer electronics, high-performance scientific computing, and many other fields are creating tremendous new opportunities for innovation in circuits and electronic systems at every level. Research in this area spans topics including analog and mixed signal circuits, RF transceivers, low power interfaces, power electronics and wireless power transfer, and many others. 

Related Research Areas

Digital brain image

Bio-Electrical Engineering

Biological and Biomedical Electrical Engineering (B2E2) consists of both applied and fundamental work to understand the complexity of biological systems at different scales, e.g., from a single neuronal or cancer cell, all the way to the brain or malignant tumor. B2E2 aims to develop new hardware and computational tools to identify, characterize, and treat diseases. In the physical domain, electrical engineering approaches to integrated microsystems lead to new biological and medical sensors. These sensors consist of state-of-the-art ultrasonic, RF, optical, MRI, CT, electrical impedance transducers. 

The integration of sensors, electronics are used to develop implantable and wearable devices, with decreasing size, weight, and power and increased functionality. B2E2 microsystems can help create interfaces for sensing and actuation to help understand the physiological and pathological mechanisms of diseases, and enable advanced robotic interfaces in medicine. Medical devices can generate vast amounts of data, which require both real-time and post-acquisition processing. B2E2 faculty, sometimes in collaboration with medical researchers, develop advanced computational tools to learn from and exploit data and apply artificial intelligence approaches to impact medical practice by improving: early disease detection, disease diagnosis, response to therapy assessment, and guided surgical procedures.

Related Research Areas